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Abstract—In the digital communication channel, the transmitted signal might get dispersive due to which the information may 

not be carried as the same is transmitted. Additive noise and inter-symbol interference (ISI) cause dispersal of the signal. Chan-

nel equalization is a key method used in the digital communication system. This mitigates the result of inter-symbol inference in 

disruptive channels. The ISI can be curtailed if the channel is specifically known. To recompense the intrinsic residual distortion 

equalization used. A comprehensive study of state-of-the-art study on nature-inspired computation approaches incorporated in 

channel equalization is presented. Several methods employed in adaptive channel equalization are debated in the literature. 

Adaptive algorithms used as optimization techniques are defined. Some of the technique that has been presented is Particle 

Swarm Optimization, Genetic Algorithm, Functional Link Artificial Neural Network, and Neural Network.   
 

Index Terms— Adaptive algorithms, Channel equalization, Digital communication channel, Functional Link Artificial Neural Network, 

Genetic Algorithm, Inter symbol interference, Particle Swarm Optimization,   

——————————      —————————— 

1 INTRODUCTION                                                                     

HE digital signal communication got a vital range of ap-

plications as the digitalization arrived. These types of ap-

plications lead digital province several modulation systems 

and more updates. Even though so many schemes and their 

updates exist, they have strappingly effected two basic prob-

lems that arise in conventional digital communication 

schemes. The two major problems have more impact are noise 

and Inter-Symbol-Interference (ISI). The reasons for this kind 

of error generating phenomenon are channel features associat-

ed between transmitter and receiver and the spreading of the 

transmitted signal. The noise outcome on communication 

hinges on the channel characteristics and it can be condensed 

with appropriate channel selection. Even the channel is found 

too noisy the signal received can be less affected if the SNR 

sustained at the receiver by improving transmitting signal 

strength. ISI on symbol energy is spread into another symbol 

duration which scatters the symbol and effects the communi-

cation [1].  

The prevailing adaptive equalizers that employ linear combin-

er structure using the LMS algorithm and its multiple variants 

accomplish inadequately in the existence of nonlinear distor-

tions, as it cannot converge to the global minimum solution for 

the multimodal and non-uniform objective function. Some of 

the few general techniques among them are GA, BFO, AIS, DE, 

PSO, and its variants [2]. To alleviate the effect of ISI, the first 

equalizer structure was proposed. Generally, the coefficients of 

adaptive linear combiner are adjusted with gradient descent 

systems such as LMS, normalized LMS (NLMS), recursive 

least square (RLS), etc. These linear FIR equalizers provide 

better performance for linear channels. However, most of the 

practical wireless channels are strictly non-linear owing to the 

manifestation of non-linearity in data converters.  

Moreover, in satellite communication, amplifier saturation in 

satellite also contributes to non-linearity. Hence, there is a 

need for a non-linear model to recover the data transmitted 

through the non-linear channels. Neural network [NN] based 

equalizers are the potential solution to combat this type of 

nonlinear alteration in the wireless communication channel. 

NN based equalizer offers a faster convergence rate with less-

er Mean Squared Error and BER due to nonlinear signal pro-

cessing capability. Due to non-linear signal processing capabil-

ity, neural networks (NNs) can create arbitrary complex deci-

sion regions. Due to these features, networks with different 

structures are successfully applied in channel equalization. To 

reduce complexity due to multiple layers, some single layer 

NN structures such as radial basis function (RBF), polynomial 

perceptron network (PPN), FLANN, Chebyshev neural net-

work (ChNN) has been used for equalization [3]. To handle 

the time-varying phenomenon of fading channels, the use of 

Recurrent Neural Network was proposed. The RNN structure 

comprises an IIR filter with a feedback system, along with 

nonlinearities associated with the neurons. The RNN outper-

forms the MLP and RBF structures and could be used for both 

trained as well as blind equalization [4]. 

The rest of the research paper is arranged as follows. In Sec-

tion II, several studies related to channel equalization is dis-

cussed. In section III, various nature-inspired computation 

techniques employed for channel equalization is mentioned. 

Finally, in section IV, the conclusion of the survey is presented. 
  
2 LITERATURE REVIEW 
Wireless communication channels were increasingly being 

pushed into the paradigm nonlinearity and ISI because of the 

demand for high-speed data through portable and power-
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efficient handheld devices. ISI and nonlinearity cause severe 

deprivation in established signals resulting in a humble quali-

ty of service. The channel equalizers were planned for justify-

ing channel nonlinearity and ISI.  

An enhanced method of training wavelet neural network-

based equalizer by PSO was proposed which comprises opti-

mizing the translation, dilation, and other weights of hidden 

layers to attain enhancement in BER performance [5]. RBF-

based NN equalizers are a striking alternate and have effica-

ciously been applied for blind equalization. RNN-based equal-

izers, generalized as IIR filters, outperform feed-forward NNs, 

comprising MLP, RBF, and FLANN [6].  

ONS Space-time processing is a rapidly emerging field that 

shows significant promise in improving the enactment of 

communication networks. Blind ST processing seems to be 

powerful leverage for the improvement of performance [7]. 

Former methodologies were based on the minimization of the 

MSE performed by a gradient descent procedure. The MSE is 

not necessarily related to the classification error—bit error rate 

(BER)—that is considered in equalization problems; moreover, 

the use of gradient-based learning techniques is often ham-

pered by the slow speed convergence and statistical ill-

conditioning. Experimental tests conducted on 2-PAM signals 

for dissimilar channels have established a better performance 

of the novel algorithm [8].  

Adaptive algorithms such as Least-Mean-Square (LMS) based 

channel equalizer intent to lessen the Intersymbol Interference 

(ISI) existing in the transmission channel. However, adaptive 

algorithms agonize from long training periods and detri-

mental local minima throughout training mode. A novel adap-

tive channel equalizer utilizing the Genetic Algorithm which is 

a derivative-free optimization tool is discussed. The recital of 

the proposed channel equalizer is estimated by MSE, conver-

gence rate, and is related to its LMS and RLS counterparts. It is 

perceived that the new adaptive equalizer based GA offers a 

better performance so far as the accuracy of reception is fretful 

[9].  

A rationalized structure for adaptive filters has been presented 

in which the major adaptive filter algorithms: LMS, NLMS, 

APA, RLS, TDAF, and PRSAF are all easily derived in a uni-

fied way. The differences between the various algorithms are 

identified as differences in the selection of a pre-conditioner. A 

further benefit of the streamlined approach is the possibility of 

doing performance analysis on general recursions rather than 

for each algorithm [10]. An ideal step-size finding algorithm 

for LMS is existing that runs iteratively and convergence to the 

equalizer coefficients by finding the optimal step-size which 

diminishes the steady-state error rate at all iteration. No ini-

tialization for the step-size value is required. The ability of the 

anticipated algorithm is presented by constructing a perfor-

mance comparison among specific additional LMS based algo-

rithms and optimal step-size LMS algorithm [11]. A complex 

stochastic gradient adaptation was proposed so that the 

MPNN equalizer can adapt to slowly varying channels. Simu-

lations have shown that the network was able to self-adjust the 

position of the centers and the weights associated with each 

center to the changing channels. The method suggested uses 

measurements of the Euclidean distance of one center to the 

other centers. Simulations showed that for certain channels, 

the computational savings during runtime by reducing the 

size of the network could be enormous [12]. The problem of 

adaptive equalization was explored when the channel diversi-

ty condition is not satisfied.  

A prediction error equalizer with a RELS algorithm was pro-

posed that showed the adaptive equalizer is universally stable, 

the parameter evaluations were consistent, and the prediction 

error congregates toward a scalar multiple of the input se-

quence [13]. Signed Regressor FLANN based non-linear chan-

nel equalizer has been employed over complex-valued non-

linear channels and the results showed that such an algorithm 

was capable of constructing a simple network whose perfor-

mance is adjacent to the optimal solution [14]. Quite a few NN 

structures and learning methods to address the issues of 

channel equalization were discussed by considering several 

representative NN algorithms. Furthermore, two ML-based 

equalizers, DNN- and CNN-based equalizers, were presented, 

and their performance was examined and compared with two 

predictable equalizers developed based on the LS and MMSE 

principles. The results showed that unlike outmoded channel 

equalization and recognition methods, no channel statistics 

were prerequisite to be discretely computed in ML-based 

equalization methods. More prominently, the BER perfor-

mance of OFDM systems engaging ML-based equalizers was 

found to be classically superior to that of OFDM systems em-

ploying conventional LS- and MMSE-based equalizers. The 

nature-inspired computation-based equalizers also have a 

higher capability to learn and analyze complicated properties 

of wireless channels and are also more effective to combat ISI 

[15]. 

3 NATURE INSPIRED COMPUTATION TECHNIQUES 

Adaptive algorithms used as optimization techniques are de-

scribed below as follows. 

3.1 Particle Swarm Optimization   

PSO algorithm suggestively hinges on group behavior of 

birds, etc., with their natural habits of grouping. In PSO, an 

abundant particle proliferates everywhere in solution space to 

find out the ultimate solution. They also stare at the best ele-

ments in their path. So particles think about their individual 

finest solutions with remaining solutions lay down so far. PSO 

was precisely modeled as follow: 

1 2( 1) . ( ) . .( ( ) ( )) . .( ( ) ( ))velc t wvelc t p rand pbest t posc t p rand gbest t posc t     

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 11, Issue 7, July-2020                                                                                                       26 

ISSN 2229-5518  

 

IJSER © 2020 

http://www.ijser.org  

( 1) ( ) ( 1)posc t posc t velc t     

Where t, velc(t), posc(t), pbest(t) are the prevailing number of 

iterations, the velocity of particles, position of particles, and 

personal finest position of the particle, respectively. Also, 

gbest(t) is the global best position, and p1, p2 are acceleration 

coefficients [16]. 

3.2 Firefly Algorithm (FFA) 

The firefly flashing is an extraordinary sight in tropical and 

temperate areas. The critical characteristic of sparks is to en-

gaged mating partners and entreat potential prey. Basic con-

cepts for FFA are: (1) a firefly may be affianced to another de-

spite their group. (2) For a couple of blinking fireflies, lighter 

fireflies will follow a brighter one. But if brighter firefly is not 

available, then it travels erratically [16]. For global minima, 

brilliance can only inversely proportionate to the approxima-

tion of a working function. Firefly algorithm is focused on two 

crucial notions, one is an incongruity in light intensity and the 

other is the commencement of attraction of other fireflies. The 

desirability of a firefly is dogged by its brightness which is by 

some means associated with working function. The brightness 

of the firefly at fixed spot x is chosen as the G(x). For any cer-

tain medium, light absorption coefficient γ, light intensity G 

varies with distance r as, 

                     
2

0

rG G e   

Here G0 is the actual radiant intensity at r = 0. The distance 

between two fireflies i and j can be specified as, 

Adaptive Channel Equalization Using Decision Directed … 
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Where 

xi, k is kth element of ith firefly. 

The indication of ith firefly is employed to one more promi-

nent jth firefly and is estimated by, 
2
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3.3 Ant Colony Optimization 

Ant Colony Optimization (ACO) is a model for designing me-

ta-heuristic algorithms and resolving solid combinatorial op-

timization hitches stimulated by the indirect communication 

of real ants. In ACO algorithms, ants build candidate resolu-

tions to the delinquent being tackled, making decisions that 

are stochastically biased by numerical information based on 

(artificial) pheromone trails and available heuristic infor-

mation. The pheromone tracks are rationalized throughout 

algorithm accomplishment to bias the ants pursuit toward 

promising decisions formerly found. 

Foraging: In foraging Individual ants bonds a chemical on the 

ground which raises the probability that other ants will follow 

the same path. Biologists have publicized that numerous colo-

ny-level behaviors detected in social insects can be elucidated 

via rather modest models in which only stigmergic communi-

cation is present. Dissimilar phases of the comportment of ant 

colonies have encouraged various types of ant colony algo-

rithms. Division of labor, brood sorting, and cooperative con-

veyance are the best examples of foraging.  

Division of labor: Division of labor is an imperative and exten-

sive feature of life in ant colonies. Social insects are all charac-

terized into two types i.e., fundamental type of division of 

labor & reproductive division of labor. There are diverse types 

of division of labor i.e., reproductive, castes, tasks proficient in 

the colony.  

Collective transport: Collective behavior grosses many forms, 

such as advent, self–organization, superorganism, quorum 

sensing, artificial intelligence, and dynamic networks.  

Cluster formation: Clustering problems that are mostly in-

spired by the behavior of ant colonies and this behavior based 

upon the brood sorting. In Brood sorting primarily ant colo-

nies sort their brood in the method of smallest items in the 

middle and largest items in the edge. The best example of 

brood sorting is communal structure formation by social in-

sects. By the comportment of ant colonies, they cluster their 

corpses and sort their larvae. The ant colony clustering algo-

rithm is deployed to improve cluster benchmark problems 

[18]. 

3.4 Artificial Neural Network 

An ANN takes the name from the system of nerve cells in the 

brain. Recently, ANN is an imperative technique for classifica-

tion and optimization problems. NNs have been widely used 

in numerous signal processing applications. Feed-forward 

neural network based on backpropagation algorithm, linear 

layer(train), layer recurrent & NARX network type that ex-

ploits the principle of discriminative learning, by minimizing 

an error function is being reconnoitered. The performance of 

suggested approaches can also be associated with adaptive 

equalizer based on the LMS algorithm. An LMS equalizer us-

ing a feed-forward neural network is built on a back-

propagation algorithm & compared its performance with 

adaptive equalizer based on a neural network. The main sec-

tion of the back-propagation algorithm is the high speed of 

convergence concerning gradient-based approaches. Simula-

tion regarding the equalization of QAM signals in the AWGN 

transmission channel is described, which demonstrated the 

usefulness of the recommended technique [17]. 

3.5 The Genetic Algorithm 

GAs is evolutionary techniques that use a Darwinian criterion 

of population evolution generally called stochastic search 

mechanism. This procedure of natural selection is utilized to 

raise the effectiveness of a group of probable solutions to ob-

tain an environmental optimum [17]. The most common algo-

rithm is Gradient-descent training used in signal processing 

today because they have a solid mathematical basis however 

gradient-descent training has few limitations:  

· Derivative built algorithm so there are chances that the fac-
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tors may fall to local minima conditions during training.  

· Do not perform reasonably under high noise surroundings 

and for nonlinear channels  

· In certain cases, they do not accomplish reasonably if the or-

der of the channel rises  

· LMS algorithm at times shows slower convergence  

These restrictions can be detached by using evolutionary algo-

rithms such as genetic algorithms. A genetic algorithm uses 

the progression of natural choice and does not involve error 

gradient statistics. A GA can find global error minima for any 

given problem. 

Classically, a genetic algorithm consists of the following steps. 

 Initialization-an initial population of the search nodes 

is randomly generated. 

 Evaluation of the fitness function- The fitness value of 

each node is calculated allowing the fitness function 

(objective function). 

 Genetic operations-new search nodes are generated 

randomly by examining the fitness value of the search 

nodes and applying the genetic operators to the 

search nodes 

 Repeat steps 2 and 3 until the algorithm converges. 

3.6 Fuzzy Neural Networks  

The kernel of a fuzzy inference system is a fuzzy knowledge 

base. In a fuzzy knowledge base, the info that comprises of 

input-output data points of the system is inferred into linguis-

tic interpretable fuzzy rules. The fuzzy rules that have IF-

THEN form and erected by using nonlinear quadratic func-

tions are used. They have the following form. 

If is and…and is Then 2

1

( 1 2 )
m

j ij i ij i j

i

y w x w x b


    

Here x1, x2,…,xm are input variables, yj =(j=1,…,n) are output 

variables which are nonlinear quadratic functions, Aji is a 

membership function for i-th rule of the j-th input defined as a 

Gaussian membership function. w1ij, w2ij and bj (i=1,..m, 

j=1,…,n) are parameters of the network. The fuzzy model that 

is described by IF-THEN rules can be attained by amending 

constraints of the conclusion and premise parts of the rules. A 

gradient method is used to train the parameters of rules in the 

neuro-fuzzy network structure. By using fuzzy rules in the 

equation, the structure of the NNFN is proposed. The NNFN 

comprises seven layers. In the first layer, the number of nodes 

is equal to the number of input signals. These nodes are de-

ployed for allocating input signals. In the second layer, each 

node corresponds to one linguistic term. For each input signal 

inward bound the system, the relationship degree to which 

input value belongs to a fuzzy set is considered. To define lin-

guistic terms the Gaussian function is used. 

A DFNN is being pragmatic to the problem of digital commu-

nication channel equalization problems for the last few years. 

Over combining the neural network learning proficiencies and 

fuzzy rules, DFNN avail the advantages of both the fuzzy log-

ic and neural networks. DFNN equalizer is grander to other 

equalizers such as RNN and minimum resource allocation 

network (MRAN) in terms of MSE and BER [20]. 

3.7 Channel Equalization using Deep Learning 

The pilot-only channel estimation as a multivariate regression 

problem is taken. The input is the binary array Y˜t while the 

output is the complex-valued Hˆ. Multivariate regression is a 

hard problem and many times it is tackled by grouping N 

multivariable regressors, which are trained independently for 

simplicity. This method adopted a single neural network (NN) 

to perform multivariate regression. It should be noted that the 

literature on NNs is very rich and precedes DL. For example, 

NNs for channel equalization was used in many other com-

munication problems. Besides, for non-perceptual data or 

when data is scarce, there are algorithms such as gradient 

boosting that are highly competitive with DL. 

The NN has trained with the mean-squared error (MSE) loss 

and aims at providing the minimum MSE (MMSE) estimation. 
2

ˆ

ˆ† min
H

H H H   
   

The 1-bit quantization means that it is not possible to estimate 

the norm of the channel with zero-threshold quantizers. This 

information can be recovered from the automatic gain control 

in the analog circuitry. Therefore, we suppose that both train-

ing and test data have NtNr and normalize the channel after 

the MMSE estimate. 

The training does not require knowledge of the distribution 

p(H) over channels, but access to a reasonable number of real-

izations (to compose a rich training set from e. g. measurement 

data) or a software routine to draw samples from this distribu-

tion on-the-fly. In contrast, state-of-art GAMP-based algo-

rithms consider the receiver knows the distribution p(H) of 

channels but not its realizations. Knowing distributions for 

AMP (even if not their parameters) and having large datasets 

for DL, are similar in the sense that both are manifestations of 

access to a potentially infinite amount of data.  

One distinction is that GAMP variants leverage the analytical 

expression of p(H) as a highly compact representation of 

knowledge about the channels. When trained, the NN is ex-

pected to find its way of representing all relevant information 

contained in p(H).  

Similarly, they train a NN under different noise conditions 

(multi-condition training) and expect it to learn and generalize 

on the conditions of interest. Both noise multi-condition train-

ing and the time-variant channel are challenging for the Sto-

chastic Gradient Descent used in DL. The network training 

with SGD may not converge even with advanced Keras’ opti-

mizers such as Adam. Most SGD routines obtain the gradient 

estimate by averaging the individual gradients of a set of B 

examples called mini batch. Having B > 1 often helps conver-

gence by averaging the noise out and maybe essential when 

the SNR imposed during training is low. In the case of time-

varying channels, SGD may not find a reasonable average di-
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rection even if σ2 is small [21]. 

3.8 Recurrent Neural Network 

RNN is generous of neural network and its networks among 

nodes form a directed graph laterally a temporal structure. 

Contrasting to feed-forward neural networks, RNN could use 

the internal state to practice sequences of inputs. Conferring to 

the above-mentioned features, premeditated the joint channel 

equalization and decoding neural model based on the struc-

ture of RNN. A Gated Recurrent Unit (GRU) was suggested to 

deal with the exploding and vanishing gradient difficulties for 

the RNN with less training parameters. The GRU has reset 

and update gates which can control the data flow and parame-

ter passing. The bi-directional Gated Recurrent Unit (bi-GRU) 

connects two hidden layers of conflicting directions to the 

same output, which can increase the performance of GRU [19]. 

3.9 Wind Driven Optimization   

WDO is a population-based iterative heuristic global optimi-

zation technique similar to other nature-inspired optimization 

algorithms, aiming to improve the best candidate solution 

over time. It is highly correlated with the actual physical equa-

tions describing the trajectory of an air parcel in our atmos-

phere. The populations of air parcels are ranked in sliding or-

der based on their pressure values such that its new velocity 

unew and new position xnew can be represented as, 

 
dim

1
(1 )

1

other

cur

new cur cur opt cur

cu
u u gx RT x x

i r


 
      

 
 

 new cur newx x u t    

where ucur is the velocity at the current iteration, α and g being 

friction coefficient and gravitational constant respectively, xcur 

is the current location, RT defines universal gas constant and 

temperature, C is the Coriolis force, xopt being the optimum 

location, r is the ranking among all parcels and cucurotherdim is 

the replaced velocity vector from another randomly chosen 

dimension to represent the influence of Coriolis force. A time 

step, ∆t equal to 1 is assumed. Coriolis force and gravitational 

pull in WDO provide a favorable contribution which prevents 

air parcels from remaining trapped at the boundary for a long 

period and pulls them back into the search space. WDO coeffi-

cients can be fine-tuned for different optimization topologies 

to provide potential benefits. The air parcel population is 

ranked centered on their pressure value (cost function) and 

velocity is updated with the following limitation, 

max max*

max max

new

new

new

u ifu u
u

u fu u

 
  

   
 

Where, the path of motion is conserved but the scale is limited 

to |umax| at any dimension and u*new represents the adjust-

ed velocity after it is limited to the maximum speed. The low-

est-ranked fitness function is taken as xopt value [22]. 

3.10 Training Weights of the Equalizers with Moth Flame 

Optimization  

Moths are kind of insects that are analogous to the family of 

butterflies and can navigate by using transverse orientation. In 

this movement, they uphold a fixed angle to the moon, which 

is quite far and hence travel in a straight line. However, when 

uncovered to the simulated lights which are nearer, they move 

spirally and locate their best positions till then. In this algo-

rithm, the candidate resolutions are the moths (M) and the 

problem variables are the flames (F). The process has been 

used for channel equalization and the step-by-step procedure 

is described below:  

1. Initialization of moths and flames:  

Let N be the number of moths and flames each having Q 

number of features which hinge on on the order of the equal-

izer to be optimized. For example, if the equalizer has two 

first-order factors in numerator and two second-order factors 

in denominator, the order of the equalizer is four but the 

number of parameters to be leveled is seven (sum of a’s and 

b’s) as can be depicted by the following equation. 
1 1

0 1 2

1 2 1 2

0 1 2 3

( )(1 )
( )

(1 )(1 )

a a z a z
H k K

b z b z b z b z

 

   

 


   
 

2. Evaluation of fitness function:  

The outcome of the channel laterally with the added AWGN 

noise is passed as input to the equalizer and the output of 

equalizer is found out. Formerly, the fitness function is as-

sessed for all the N candidates. For FIR channel, fitness is 

mean square error and for IIR channel, it is JCM.  

3. Sorting:  

Sort the moths and their fitness factor values to minimize the 

fitness function.  

4. Updation of weights:  

Update the moth positions conferring to the following equa-

tion: 

       . .cos(2 )kt

i j iM F e t  
 

           
i j iF M    

The k is a constant for outlining the shape of a logarithm spiral 

(defining the crusade of the moth towards the flame) and t is a 

random number between ½r; 1, where r is linearly decreased 

from - 1 to - 2, to highlight exploitation. This means a lesser 

value of t conforming to a closer position to the flame as com-

pared to a higher value of t. 

5. Update the total number of flames:  

The flame number is updated using, 

 
1

.
N

Flameno round N itr
T

 
  

 
 

Where T is the total amount of iterations and itr is the current 

iteration. 

6. Update the location of the flame:  

Equate the earlier flame position with the existing moth posi-

tions. If the current moth position is found to be better, then 

update the flame position to this current moth position. Also, 

update the best flame position if a new better value is found.  
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7. Stopping Criteria:  

Either the desired fitness factor is achieved or the number of 

iterations reaches to the maximum defined limit. Once it is 

achieved, the optimized weights of the equalizer are obtained 

[23]. 

4 CONCLUSION 

Several nature-inspired computation methods have been dis-

cussed for the adaptive channel equalization problem. GA, 

PSO was used to form NN, but these are restricted in updating 

the ANN weight. Again, PSO research is limited to space and 

can easily fall into a local minimum. WDO aims to improve 

the best candidate solution over time and it is highly correlat-

ed with the actual physical equations describing the trajectory 

of an air parcel in our atmosphere. DFNN equalizer is superior 

to other equalizers by comparing BER. Vector Support Ma-

chines (SVMs) can be used to equalize the non-linear recursive 

channels as future work. 

 

REFERENCES 

[1] Varma, D. S., Kanvitha, P., & Subhashini, K. R. (2019, April). Adap-

tive Channel Equalization using Teaching Learning based Optimiza-

tion. In 2019 International Conference on Communication and Signal Pro-

cessing (ICCSP) (pp. 0001-0006). IEEE. 

[2] Sinha, R., Choubey, A., Mahto, S. K., & Ranjan, P. (2019). Quantum 

Behaved Particle Swarm Optimization Technique Applied to FIR-

Based Linear and Nonlinear Channel Equalizer. In Advances in Com-

puter Communication and Computational Sciences (pp. 37-50). Springer, 

Singapore. 

[3] Ingle, K. K., & Jatoth, R. K. (2020). An Efficient JAYA Algorithm with 

Lévy Flight for Non-linear Channel Equalization. Expert Systems with 

Applications, 145, 112970. 

[4] Nanda, S. J., & Jonwal, N. (2017). Robust nonlinear channel equaliza-

tion using WNN trained by symbiotic organism search algo-

rithm. Applied Soft Computing, 57, 197-209. 

[5] Majumder, S., & Giri, M. K. (2020). Nonlinear Channel Equalization 

Using Wavelet Neural Network Trained Using PSO. Available at 

SSRN 3572806. 

[6] Burse, K., Yadav, R. N., & Shrivastava, S. C. (2010). Channel equaliza-

tion using neural networks: A review. IEEE transactions on systems, 

man, and cybernetics, Part C (Applications and Reviews), 40(3), 352-357. 

[7] Papadias, C. B., & Paulraj, A. J. (1997, April). Space-time signal pro-

cessing for wireless communications: a survey. In First IEEE Signal 

Processing Workshop on Signal Processing Advances in Wireless Commu-

nications (pp. 285-288). IEEE. 

[8] Parisi, R., Di Claudio, E. D., Orlandi, G., & Rao, B. D. (1997). Fast 

adaptive digital equalization by recurrent neural networks. IEEE 

Transactions on Signal Processing, 45(11), 2731-2739. 

[9] Mohammed, J. (2012). A study on the suitability of genetic algorithm 

for adaptive channel equalization. International journal of electrical and 

computer engineering, 2(3), 285. 

[10] Husøy, J. H., & Abadi, M. S. E. (2008). Unified approach to adaptive 

filters and their performance. IET signal processing, 2(2), 97-109. 

[11] Solmaz, C. Ö., Oruç, Ö., & Kayran, A. H. (2011, April). Optimal step-

size LMS equalizer algorithm. In 2011 IEEE 19th Signal Processing and 

Communications Applications Conference (SIU) (pp. 853-856). IEEE. 

[12] Padhy, S. K., Panigrahi, S. P., Patra, P. K., & Nayak, S. K. (2009). Non-

linear channel equalization using adaptive MPNN. Applied Soft Com-

puting, 9(3), 1016-1022. 

[13] Radenkovic, M. S., & Bose, T. (2009). A recursive blind adaptive 

equalizer for IIR channels with common zeros. Circuits, Systems & 

Signal Processing, 28(3), 467-486. 

[14] Dash, S., Sahoo, S. K., & Mohanty, M. N. (2013). Design of adaptive 

FLANN based model for non-linear channel equalization. 

In Proceedings of the Third International Conference on Trends in Infor-

mation, Telecommunication and Computing (pp. 317-324). Springer, 

New York, NY. 

[15] Zhang, L., & Yang, L. L. (2020). Machine Learning for Joint Channel 

Equalization and Signal Detection. Machine Learning for Future Wire-

less Communications, 213-241. 

[16] Sarangi, A., Sarangi, S. K., & Panigrahi, S. P. (2018). Adaptive Chan-

nel Equalization Using Decision Directed and Dispersion Minimizing 

Equalizers Trained by Variable Step Size Firefly Algorithm. 

In Intelligent Engineering Informatics (pp. 301-310). Springer, Singa-

pore. 

[17] Kundu, D., & Nijhawan, G. (2017). Performance Analysis of Adaptive 

Channel Equalizer Using LMS, Various Architecture of ANN and 

GA. International Journal of Applied Engineering Research, 12(22), 12682-

12692. 

[18] Himabindu, K., & Jyothi, J. (2017). Nature inspired computation 

techniques and its applications in soft computing: survey. Int J Res 

Appl Sci Eng Tech, 5, 1906-1916.  

[19] Hu, Y., Zhao, L., & Hu, Y. (2019, June). Joint channel equalization 

and decoding with one recurrent neural network. In 2019 IEEE Inter-

national Symposium on Broadband Multimedia Systems and Broadcasting 

(BMSB) (pp. 1-4). IEEE. 

[20] Kaur, G., & Kaur, G. (2019). Non-linearities mitigation with fuzzy 

neural networks using a machine learning algorithm in a CO-OFDM 

system. IET Optoelectronics, 14(1), 44-51. 

[21] Cheng, X., Liu, D., Wang, C., Yan, S., & Zhu, Z. (2019). Deep learn-

ing-based channel estimation and equalization scheme for 

FBMC/OQAM systems. IEEE Wireless Communications Letters, 8(3), 

881-884. 

[22] Sinha, R., & Choubey, A. (2017). Soft Computing Techniques to Esti-

mate FIR Filter Weights in an Adaptive Channel Equalizer: A Com-

parative Study. International Journal of Applied Engineering Re-

search, 12(13), 3988-3995. 

[23] Nanda, S. J., & Garg, S. (2019). Design of Supervised and Blind 

Channel Equalizer Based on Moth-Flame Optimization. Journal of The 

Institution of Engineers (India): Series B, 100(2), 105-115. 

 

 

 

IJSER

http://www.ijser.org/



